| raft 002 Summary - Subject to edits after final QAQC | | | TPDES Permit Dai | TCEQ Daily | End
Lab Limits | date 4/24/2019
Date 4/25/2019 | 4/25/2019
4/26/2019 | 4/26/2019
4/27/2019 | 5/2/2019
5/3/2019 | 5/3/2019
5/4/2019 | 5/4/2019
5/5/2019 | 5/5/2019
5/6/2019 | 5/10/2019
5/11/2019 | | 5/12/2019
5/13/2019 | 5/13/2019
5/14/2019 | 5/14/2019
5/15/2019 | 5/15/2019
5/16/2019 | 5/16/2019
5/17/2019 | 5/17/2019
5/18/2019 | 5/18/2019
5/19/2019 | 5/19/2019
5/20/2019 | 5/20/2019
5/21/2019 | 5/21/2019
5/22/2019 | 5/22/2019
5/23/2019 | 5/23/2019 5/24/2019
5/24/2019 5/25/2019 | 5/26/2019 | 5/27/2019 | |--|---|-------------------------|-------------------------------|----------------------|-----------------------|----------------------------------|------------------------|------------------------|-----------------------------|----------------------|----------------------|----------------------|---|---------------------------|------------------------|------------------------|------------------------|------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--|------------------|-----------| | fluent Compounds | Current
Laboratory | Meth | hod (where present) (ug/L)*** | Maximum
(ug/L) | (ug/L) | (ug/L)* | Day 2
(ug/L)* | Day 3
(ug/L)* | Day 4
(ug/L)* | Day 5
(ug/L)* | Day 6
(ug/L)* | Day 7
(ug/L)* | Day 8
(ug/L)* | Day 9
(ug/L)* | Day 10
(ug/L)* | Day 11
(ug/L)* | Day 12
(ug/L)* | Day 13
(ug/L)* | Day 14
(ug/L)* | Day 15
(ug/L)* | Day 16
(ug/L)* | Day 17
(ug/L)* | Day 18
(ug/L)* | Day 19
(ug/L)* | Day 20
(ug/L)* | Day 21 Day 22
(ug/L)* (ug/L)* | | | | 1,2-Tetrachloroethane
1-Trichloroethane | Pace
Pace | 624.1
624.1 | L | 21
7100 | 0.385 | ND** ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2,2-Tetrachloroethane
2-Trichlor-1,2,2-trifluoroethane (1,1,2-Trichlorotrifluoroethane) | Pace
Pace | 624.1
624.1 | L | 26.35
6040000 | 0.13 | ND** ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | ,2-Trichloroethane
´-Biphenyl | Pace
Pace | 624.1
625.1 | | 21
3520 | 0.383
0.325 | ND** ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Dichloroethane
Dichloroethylene [1,1-Dichloroethene] | Pace
Pace | 624.1
624.1 | L | 22
16 | 0.259 | ND** | ND** | ND** | ND** | ND** | 0.94 J
ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Dichloropropene
2,3-Trichlorobenzene | Pace
Pace | 624.1
624.1 | | 62200
171 | 0.352 | ND**
ND** | ND**
ND** | ND** | ND**
ND** | ND** | ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2,3-Trichloropropane
2,4,5-Tetrachlorobenzene | Pace
Pace | 624.1
625.1 | L | 165
0.328 | 0.807
2.41 | ND** ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2,4-Trichlorobenzene
2,4-Trimethylbenzene | Pace
Pace | 624.1
624.1 | L | 0.076
217 | 0.355 | ND** | ND** | ND** | ND**
ND** | ND** | ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2-Dibromo-3-chloropropane 2-Dibromoethane [Ethylene Dibromide] | Pace
Pace | 504.1
504.1 | L | 11300
4.24 | 0.0043 | ND**
ND** | ND**
ND** | ND**
ND** | ND**
ND** | ND** | ND**
ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2-Dichloroethane 2-Dichloropropane | Pace
Pace | 624.1 | | 68
153 | 0.361 | .731 J
ND** | ND** | ND** | ND**
ND** | ND** | ND**
ND** | ND** | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2-Diphenylhydrazine 2-trans -Dichloroethylene | Pace
Pace | 625.1
624.1 | L | 1120 | 0.318 | ND** | ND
ND** | ND
ND** | ND
ND** | ND** | ND
ND** | ND
ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 3,5-Trimethylbenzene 3-Dichloropropene [1,3-Dichloropropylene] | Pace
Pace | 624.1 | L | 3050 | 0.387 | ND**
ND** | ND** | ND** | ND**
ND** | ND** | ND**
ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 2-Dichloropropane 2'-Oxybis(1-chloropropane) | Pace
Pace | 624.1 | | 163
181 | 0.321 | ND** ND | ND** | ND** | ND** | ND** | ND** | ND** | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | MD | | ND J4
ND | ND | | | | | | | | | | | 4,5 Trichlorophenol 4,5-TP [Silvex] | Pace/Eurofins
Pace | 8151 | | 12
504 | 0.329 | ND/ND ⁶ | ND/ND ⁶ | ND
ND | ND J4 | ND J4 | ND
ND | ND
ND | ND/ ND ^{5, 6} ND/ ND ⁵ | ND J3 | ND ^b | ND | ND I | ND
ND | ND | | | | | | | | | | | 4,6-Trichlorophenol 4-Dichlorophenol | Pace
Pace | 625.1
625.1 | L | 39 | 0.297 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 4-Dimethylphenol 4-Dinitrophenol | Pace
Pace | 625.1
625.1 | L | 18
71 | 3.25 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 4-Dinitrotoluene
6-Dinitrotoluene | Pace
Pace | 625.1 | L | 30 | 0.279 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Butanone Chloronaphthalene | Pace
Pace | 624.1
625.1 | L | 1650
1000 | 0.33 | ND** | ND** | ND** | ND**
ND J4 | ND** | ND**
ND J4 | ND**
ND J4 | ND/ ND ⁵ ND J4/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Chlorophenol Hexanone | Pace
Pace | 625.1
624.1 | L | 33400 | 0.283
3.82 | ND** ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND | | | | | | | | | | | | Methylnaphthalene Methylphenol | Pace
Pace | 625.1
625.1 | l 1920 | 30
510 | 0.311 | ND/ND ⁶ | ND/ND ⁶ | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Nitroaniline Nitrophenol | Pace
Pace | 625.1
625.1 | L | 135 | 0.32 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | 4-Methylphenol 3'-Dichlorobenzidine | Pace
Pace | 625.1
625.1 | L | 9301 | 0.266 | ND/ND ⁶ | ND/ND ⁶ | ND
ND | ND
ND | ND
ND | .294 J
ND | ND
ND | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | I-Benzofluoranthene (benzo(b)fluoranthene) Nitroaniline | Pace
Pace | 625.1
625.1 | | 23 | 0.0941 | ND
ND ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | I'-DDD
I'-DDE | Eurofins ¹⁴ Eurofins ¹⁴ | 608
608 | | 0.00273
0.000177 | 0.017
0.016 | ND
ND ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | ND
ND | ND
ND | ND
ND | | | | | | | l'-Isopropylidenediphenol [Bisphenol A] | Eurofins ¹⁴
Eurofins | 608
D7065 | | 0.000546
21848 | 0.018
0.328 | ND
.4 J | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND/ND ⁵ | ND
ND | ND
ND | | | ND | | | ND | ND | ND | | | | | | | i-Dinitro-2-methylphenol
i-Dinitro- <i>o</i> -cresol (4,6-Dinitro-2-Methylphenol) | Pace
Pace | 625.1
625.1 | | 1100
78 | 2.62
2.75 | ND
ND ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Chloro-3-methylphenol Chloroaniline | Pace
Pace | 625.1
625.1 | | 870
2140 | 0.266
0.382 | ND
ND ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Methyl-2-pentanone
Nitroaniline | Pace
Pace | 624.1
625.1 | | 61500
966 | 2.14
0.349 | ND** ND/ ND ⁵
ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | Nitrophenol
enaphthene | Pace
Pace | 625.1
625.1 | | 72
22 | 2.01
0.316 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | enaphthylene
etone | Pace
Pace | 625.1
624.1 | | 22
7110 | 0.309
10 | ND
ND** ND/ ND ⁵
11.4 J/10.3 J | ND
11.9 J | ND
ND | | | ND
ND | | | | | | | | | | | | etophenone
rylonitrile | Pace
Pace | 625.1
624.1 | | 50
96 | 2.71
1.87 | ND
ND** | ND
ND** | ND
ND** | ND
16 | ND
ND** | ND
ND** | ND
ND** | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | drin
nmonia Nitrogen | Eurofins ¹⁴
Pace | 608
350.1 | L 7000 | 0.0000156
4960 | 0.00813
31.7 | ND
ND | ND J4
ND | ND
ND | ND
ND J4 | ND
60 J | ND
203 B | ND
189 | ND/ ND ^{5, 6}
50 J/47 J5 | ND ⁶
46 B J | ND ⁶ | | ND I | ND
ND | | | ND | ND | ND | | | | | | | niline
nthracene | Pace
Pace | 625.1
625.1 | | 4690
0.18 | 2.43
0.21 | ND J3 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND/ ND ⁵
ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | ntimony, Total
rsenic, Total | Pace
Pace | 200.8 | 3 | 1464
62 | 0.754
0.17 | 13.5
15.8 | 2.34
4.15 | 5.28
3.68 | 4.34
3.02 | 1.94 J
3.35 | 2.86
6.22 | 1.92 J
5.6 | 1.6 J J4 / 1.66 J J4 ⁵
2.11/ 1.9 ⁵ | 5.84
1.28 | 1.09 J J4
2.64 | | | 1.1 J
1.25 | | | | | | | | | | | | razine
enzaldehyde | Pace
Pace | 625.1
625.1 | | 55600
42600 | 1.53
1.4 | ND
ND ND/0.332 J ⁵
ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | nzene
nzidine | Pace
Pace | 624.1
625.1 | | 37
0.146 | 0.331
4.32 | 8.77
ND J3 | ND** | ND** | 0.82 J
ND J4 | 2.79
ND J4 | 16.1
ND J4 | 2.14
ND | 1.27/ 1.33 ⁵
ND/ ND ⁵ | 0.863 J
ND | 1.56
ND | | | 0.488 J
ND | | | | | | | | | | | | nzo(a) anthracene
nzo(a) pyrene | Pace
Pace | 625.1
625.1 | | 0.025
0.0025 | 0.097 | ND
ND ND/ND^5
ND/ND^5 |
ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | enzo(b)fluoranthene
enzo(k)fluoranthene | Pace
Pace | 625.1
625.1 | | 0.013 | 0.089 | ND
ND ND/ND^5
ND/ND^5 | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | nzoic Acid
nzyl alcohol | Pace
Pace | 625.1
625.1 | | 0.29 | 4.4 | ND J4 | ND J3,4 | ND J4 | ND J4 | ND J4 | ND J4 | ND
ND | ND/ND^5
ND/ND^5 | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | (2-chloroethoxy)methane
(2-chloroethyl)ether | Pace
Pace | 625.1
625.1 | | 12300
58.5 | 0.345 | ND
ND ND/ND^5
ND/ND^5 | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | (2-chloroisopropyl)ether
(2-ethylhexyl) phthalate [Di(2-ethylhexyl) phthalate] | Pace
Pace | 625.1
625.1 | | 181 | 0.467 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND
0.96 J | ND
891 I | | | ND
ND | | | | | | | | | | | | (chloromethyl)ether pmobenzene | ALS
Pace | 8270
624.1 | | 0.375 | 0.2 | ****
ND** | ND
ND** | ND
ND** | ND
ND** | ND
ND** | ND
ND** | ND
ND** | .24/ND ⁵ ND/ ND ⁵ | ND ND | ND ND | ND | ND I | ND
ND | ND | | | omochloromethane omodichloromethane [Dichlorobromomethane] | Pace | 624.1
624.1 | | 26800
275 | 0.52 | ND** | ND** | ND** | 0.818 J
ND** | ND** | ND**
0.694 J | ND**
0.579 J | ND J4/ ND ⁵ | ND J4 | ND
ND | | | ND
ND | | | | | | | | | | | | omoform [Tribromomethane] | Pace
Pace | 624.1 | | 1060 | 0.469 | 18.9 | 17 | 9.62 | ND** | 7.02 | 6.73 | 18.4 | 6.73/ 6.93 ⁵
4.6/ 4.81 ⁵ | ND ND | ND
ND | | | ND
ND | | | | | | | | | | | | tyl benzyl phthalate
dmium, Total | Pace
Pace | 625.1
200.8 | 3 17 | 7 | 0.275 | ND
ND ND/ ND ⁵ ND/ ND ⁵ | ND ND | ND
ND | | | 0.227 J | | | | | | | | | | | | prolactam rbaryl | Pace
Eurofins | 625.1
531.1 | | 408000
288 | 0.583 | ND | ואט | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND/ ND ⁵ ND/ND ⁵ | ND
ND | ND ND | ND | ND I | ND
ND | ND | | | ND | ND | | | | | | | bon disulfide | Pace
Pace | 625.1
624.1 | | 250
34300 | 0.162 | ND** | ND** | ND
ND** | ND
ND**
ND** | ND** | ND
ND** | ND
ND** | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND ND | | | ND
ND | | | | | | | | | | | | rbon Tetrachloride rbonaceous Biochemical Oxygen Demand (5-day) emical Oxygen Demand (COD) | Pace
SGS
Pace | 624.1
SM 52 | 210B 39500 | 18
19800
55000 | 0.379
6000
3000 | 17900 ⁴ | ND ⁴ | ND ⁴ | 4000 4 | 5600 ⁴ | 5300 ⁴ | 5900
37400 | ND/ ND ⁵ 5900/5600 ⁵ 46300/43600 ⁵ | ND
15000 | ND 13100 | ND | | ND
ND/ND ¹²
24800 | ND | ND | See Note ¹³ | ND ⁴ | ND ⁴ | ND/ND ¹² | | ND | | | | emical Oxygen Demand (COD) lordane | Pace Eurofins ¹⁴ | 410.4
608 | 4 400000 | 55000
0.00341 | 3000
0.098 | ND 20000 | ND 256000 | 33100
ND | 26600
ND
463000 | ND F01000 | 34000
ND | ND | 46300/ 42600 ⁵
ND/ ND ⁵ | 15900
ND | ND 12100 | | 1 | 24800
ND | | | ND | ND | ND | | | | | | | oride orobenzene orodibromomethano [Dibromochloromethano] | Pace
Pace | 300
624.1 | | Report
15 | 51.9
0.348 | 398000
ND** | 356000
ND** | 398000
ND** | 462000
ND** | 501000
ND** | 526000
ND** | 519000
ND** | 457000/ 450000 ⁵
ND/ ND ⁵ | 415000
ND | 396000
ND | | | 387000
ND | | | | | | | | | | | | orodibromomethane [Dibromochloromethane] oroethane | Pace
Pace | 624.1 | | 104 | 0.327 | 4.1
ND** | 3.25
ND** | .747 J
ND** | 6.21
ND** | | 1.29
ND** | 1.47
ND** | 9.75/ 10.2 ⁵
ND/ ND ⁵ | ND
ND | ND ND | | | ND
ND | | | | | | | | | | | | oroform [Trichloromethane] oromethane | Pace
Pace | 624.1 | | 21
13500 | 0.324 | ND** 1.98 J/ 2.06 J ⁵ ND/ ND ⁵ | ND
ND | ND ND | | | ND
ND | | | | | | | | | | | | orpyrifos
romium, Hexavalent | Pace
SGS | 8141/
SM35 | 500 Cr B | 0.00517 | 0.245 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND Q
ND | ND/ ND ⁵ ND/ND ⁵ | ND
ND | ND
ND | ND | ND I | ND ¹⁵ | | | romium, Total rysene | Pace
Pace | 200.8 | | 190
2.52 | 0.32 | .976 J
ND | ND
ND | ND
ND | .357 J
ND | ND
ND | .555 J
ND | 0.491 J
ND | 0.445 J/ ND ⁵ ND/ ND ⁵ | 0.352 J
ND | ND
ND | | | 0.432 J
ND | | | | | | | | | | | | 1,2-Dichloroethene (cis and trans) 1,3-Dichloropropene | Pace
Pace | 624.1
624.1 | | 1120
40 | 0.26 | ND**
ND** | ND** | ND** | ND** | ND** | ND** | ND** | ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | alt, Total
per, Total | Pace
Pace | 200.8 | 3 14 | 16700
5.7 | 0.27 | ND
3.88 | ND
.855 J | ND
2.99 | .368 J
<mark>6.53</mark> | 0.434 J
4.93 | .732 J
.368 J | 0.543 J
0.578 J | 0.841 J/ 0.755 J ⁵
0.897 J/ 0.874 ⁵ | | 0.74 J
5.58 | | | 1.37 J
1.52 | | | | | | | | | | | | sols [Methylphenols] ¹
nide, Amenable | Pace
a&b Labs | 625.1
SM 45 | L
500CN-CG | 12715
2.2 | see commer | ts ¹ ND | ND | ND | ND | ND | ND | ND
ND | ND/ ND ⁵ | ND | ND | ND | | ND
ND | **** | ND | ND | ND | ND | | | ND ND | ND | | | ohexane | Pace
Pace | SM45
624.1 | 500CN 5.6
L | 2.2
295000 | 1.8
0.39 | 7.32
ND** | 4.18 J
ND** | 3.78 J
ND** | 3.2 J
ND** | 3.1 J
ND** | 3.5 J
ND** | 3.74 J
ND** | 28/ 28.7 ⁵
ND/ ND ⁵ | ND
ND | ND
ND | | | 11.8 B P1
ND | | | | | | | | | | | | itol [Fenpropathrin]
neton | PAL
Pace | LC/M: | | 646
0.0896 | 0.06
0.341 | ND
ND Q | ND
ND/ ND ⁵ | ND
ND | ND
ND | ND | | | | | | | zinon
enzo(a,h)anthracene | Pace
Pace | 8141/
625.1 | /1657 ⁹ | 0.385 | 0.377
0.249 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND Q
ND | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | enzofuran
nlorodifluoromethane | Pace Pace | 625.1
624.1 | L | 65
37600 | 0.338 | ND
ND** ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | hloromethane [Methylene Chloride] ofol [Kelthane] | Pace Pace Eurofins | 624.1
624.1
8081/ | | 40 0.41 | 0.331 | ND** ND/ ND ⁵ ND/ND ⁵ | ND
ND | ND
ND | ND | ND I | ND
ND | ND | ND | ND | ND | ND | ND | | | | | | ldrin | Eurofins ¹⁴ | 608 | | 0.0000273 | 0.018 | ND
ND ND/ ND ^{5, 6} | ND ⁶ | ND ⁶ | | ND I | ND
ND | | | ND | ND | ND | , ND | | | | | | thyl phthalate nethyl phthalate | Pace
Pace | 625.1
625.1 | L | 19 | 0.282 | ND
2021 | ND
ND | ND | ND
2041 | ND
ND | ND
ND | ND
ND | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND
ND | | | ND
ND | | | | | | | | | | | | n -butyl phthalate exins/Furans [TCDD Equivalents] | Pace Pace | 625.1
1613 | | 0.00000108 | 0.266 | .597] | 0 | .284 J
0 | .384 J | ND | | 0.000000012 | ND/.399 J ⁵ | ND | ND | | | 0.442 J | | | ND | ND | ND | | | | | | | dosulfan I (alpha) | Eurofins ¹⁴ Eurofins ¹⁴ | 608 | | 0.00807 | 0.018 | ND | ND
ND | ND
UD | ND
ND | ND
ND | ND
ND | ND
ND | ND/ ND ⁵ ND/ ND ⁵ | ND
ND | ND ND | | | ND
ND | | | ND
ND | ND
ND | ND
ND | | | | | | | dosulfan sulfate | Eurofins ¹⁴ | 608 | | 0.00807
0.00179 | 0.019 | ND
ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND/ ND ⁵ | ND
ND | ND
ND | | | ND | | | ND
ND | ND
ND | ND
ND | | | | | | | Enteressesi | | DCE03 | | 104 | | 12 mm /100m | ml 21 C mnn/100n | ol 275 5 man /100 | ml 130.1 mmn/100 | ml 2.1 mnn/100m | 1 110 C mnn /100ml | 21.2 mnn/100n | ol 22.6 /27.5 ⁵ | -1 2 mnn/100ml | 2mnn/100ml 22.4/ | /mnn/100ml 2 mnn/100r | 1200 7 mm /100ml | 02.0 mnn/100ml 0.4 mnn/ | /100ml 72 mnn/100r | ml 40.7 mm /100ml | > 2410 6 mm /100 | 0ml 916.4 mmn/100ml 97.1 m | nn /100ml | 1 5 | |---|--------------------------------|-------------------------------|--------------|---------------|------------------------|---------------------------------|---------------------------|--
--|-----------------|--------------------|-----------------------|--|----------------|-------------------|-----------------------|---------------------|-------------------------|--------------------------|--|------------------|----------------------------|-------------|------------| | Enterococci Epichlorohydrin | SGS | D6503
8260 | | 2751 | na
 | 12 mpn/100r | ml 21.6 mpn/100r | ND 275.5 mpn/100i | <mark>ml 130.1 mpn/100</mark>
ND | MD 3.1 mpn/100m | ND 110.6 mpn/100ml | 21.3 mpn/100n
ND** | nl 22.6 /27.5 ⁵ mpn/100m | ND | 3mpn/100ml 32.4/ | /mpn/100ml 2 mpn/100r | nl 1299.7 mpn/100ml | 93.8 mpn/100ml 9.4 mpn/ | /100ml /2 mpn/100r
ND | ml 40.7 mpn/100ml | >2419.6 mpn/100 | Oml 816.4 mpn/100ml 87.1 m | pn/100ml ND | | | Ethylbenzene | Pace | 624.1 | | 32 | 0.384 | ND** ND/ ND ⁵ | ND | ND ND | NO. | ND | NO NO | IND | IND | ND . | ND . | | | | Ethylene Glycol | Pace | 8015 | | 22967280 | 492 | ND | ND | ND | ND | ND | ND | 9540 | 2370 J/ ND ⁵ | ND | ND | | ND | | | | | | | | | Fluoranthene | Pace | 625.1 | 68 | 2.96 | 0.31 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Fluorene | Pace | 625.1 | | 22 | 0.323 | ND | ND | ND | ND J4 | ND J4 | ND J4 | ND | ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Guthion [Azinphos Methyl] Heptachlor | Pace
Eurofins ¹⁴ | 8141/1657 ⁹
608 | | 0.00896 | 0.348 | ND | ND | ND | ND | ND
ND | ND
ND | ND Q
ND | ND/ ND ⁵ ND/ ND ⁵ | 1.1- | ND
ND | | ND | | ND | ND | ND | | | | | Heptachlor Epoxide | Eurofins ¹⁴ | 608 | | 0.000136 | 0.018 | ND ND/ ND ⁵ | 112 | ND | | ND | | ND | ND | ND | | | | | Hexachlorobenzene | Pace | 625.1 | | 0.00068 | 0.341 | ND/ND ⁶ | ND/ND ⁶ | ND | ND | ND | ND | ND | ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Hexachlorobutadiene | Pace | 625.1 | | 0.22 | 0.329 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Hexachlorocyclohexane (alpha) | Eurofins ¹⁴ | 608 | | 0.0114 | 0.017 | ND ND/ ND ⁵ | ND | ND | | ND | | ND | ND | ND | | | | | Hexachlorocyclohexane (beta) | Eurofins ¹⁴ | 608 | | 0.355 | 0.018 | ND ND/ ND ⁵ | ND | ND | | ND | | ND | ND | ND | | | | | Hexachlorocyclohexane (gamma) [Lindane] Hexachlorocyclopentadiene | Eurofins ¹⁴ Pace | 608 | | 0.0752 | 2.33 | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND/ ND ⁵ | ND | ND | | ND | | ND | ND | ND | | | | | Hexachloroethane | Pace | 625.1 | | 2.33 | 0.365 | ND | ND | ND | ND | ND
ND | ND ND | ND | ND J4/ ND ⁵ | ND | ND | | ND | | | | | | | | | Hexachlorophene | Pace | 625.1 | | 3.96 | 14.4 | ND J4 $ND J4/ ND^5$ | ND J4 | ND J4 | | ND J4 | | | | | | | | | Indeno(1,2,3-cd)pyrene | Pace | 625.1 | | 0.013 | 1.44 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Isophorone | Pace | 625.1 | | 650 | 0.272 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Isopropylbenzene | Pace | 624.1
351.2 | | 8440 | 0.326 | ND**
434 B J6 | ND** | ND** | ND**
278 B | ND** | ND**
835 B | ND** | ND/ ND ⁵
915/ 804 ⁵ J6 | ND
273 B P1 | ND
42.3 B J P1 | | ND 796 P1 | | | | | | | | | Kjeldahl Nitrogen, TKN Lead, Total | Pace
Pace | 200.8 | 26 | 11 | 0.26 | 434 B J6 | 594 B J6 | 456 B | 7/8 B | 536 B | ND
832 R | 0.308 B J | 915/ 804° J6
ND/ ND ⁵ | 0.354 J | 42.3 B J P I | | 796 P.I | | | | | | | | | m,p-Xylene | Pace | 624.1 | 20 | 2400 | 0.719 | ND** | ND** | ND** | .821 J | ND** | 0.799 J | ND | ND/ ND ⁵ | | ND | | ND | | | | | | | | | Malathion | Pace | 8141/1657 ⁹ | | 0.00896 | 0.173 | ND Q | ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | m-Dichlorobenzene [1,3-Dichlorobenzene] | Pace | 624.1 | | 31 | 0.22 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Mercury, Total | Pace | 245.1/245.7 ¹⁰ | 0.035 | 0.015 | 0.049 | ND | .0496 J / ND ³ | ND | ND | ND | 1.63 | 0.417 | ND ¹⁶ / ND | 112 | ND | | | | | | | | | | | Methoxychlor Methyl acetate | Eurofins ¹⁴ | 608 | | 0.0269 | 0.019 | ND
ND** | ND** | ND** | ND
ND** | ND** | ND** | ND
ND** | ND/ ND ⁵ | 110 | ND | | ND | | ND | ND | ND | | | | | Methyl acetate Methyl bromide (bromomethane) | Pace
Pace | 624.1
624.1 | | 822000
600 | 0.866 | ND** | ND** | ND** | ND**
ND** | ND** | ND** | ND** | ND/ ND ⁵ | ND | ND
ND | | ND | | | | | | | | | Methyl Chloride | Pace | 624.1 | | 86 | 0.866 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Methyl ethyl ketone (2-Butanone) | Pace | 624.1 | 4810 | 992000 | 3.93 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Methyl tert-butyl ether [MTBE] | Pace | 624.1 | | 15 | 0.367 | ND** 0.391 J/ 0.371 J ⁵ | 0.706 J | 1.83 | | ND | | | | | | | | | Methylcyclohexane | Pace | 624.1 | | 157000 | 3.5 | ND** ND/ ND ⁵ | 110 | ND | | ND | | | | | | | | | Methylene bromide | Pace | 624.1 | | 4300 | 0.346 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Methylnaphthalene Mirey | Pace | 625.1
8081/608 | | 0.29 | 0.452 | ND | ND | ND
ND | ND | ND | ND | ND
ND | ND/ND ⁵ | ND | ND ND | ND | ND | ND ND | ND | ND | ND | ND | | | | Naphthalene | Eurofins
Pace | 625.1 | | 0.000896 | 0.0208 | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND/ND ⁵ | ND
ND | ND ND | INU | ND
ND | IND IND | UND | IND | IND | IND | | | | n-Butylbenzene | Pace | 624.1 | | 1200 | 0.361 | ND** ND/ ND ⁵ | 110 | ND | | ND | | | | | | | | | n-Decane | Pace | 625.1 | 948 | 390 | 0.586 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Nickel, Total | Pace | 200.8 | 25 | 11 | 0.32 | 3.76 | 2.12 | 1.5 | 2.53 | 3.54 | 2.45 | 2.68 | 6.3/ 6.12 ⁵ | 6.64 | 3.48 | | 3.53 | | | | | | | | | Nitrobenzene | Pace | 625.1 | | 27 | 0.367 | ND ND/ ND ⁵ | 145 | ND | | ND | | | | | | | | | N-Nitrosodiethylamine | Pace | 625.1 | | 2.87 | 0.497 | ND | ND
ND | ND ND | ND ND | ND
ND | ND | ND | ND/ ND ⁵ | 110 | ND
ND | | ND | | | | | | | | | n-Nitrosodimethylamine N-Nitroso-di-n-Butylamine | Pace
Pace | 625.1
625.1 | | 5.74 | 0.348 | ND | ND
ND | ND ND | ND | ND | ND | ND
ND |
$\frac{\text{ND/ND}^5}{\text{ND/ND}^5}$ | 110 | ND | | ND | | | | | | | | | N-Nitrosodi-n-propylamine | Pace | 625.1 | | 5.1 | 0.401 | ND ND/ ND ⁵ | 110 | ND | | ND | | | | | | | | | N-Nitrosodiphenylamine | Pace | 625.1 | | 60 | 1.19 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | n-Octadecane | Pace | 625.1 | 589 | 0.29 | 0.377 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Nonylphenol | Eurofins | D7065-11 | | 1.52 | 1.64 | ND ND/ND ⁵ | 110 | ND | | | | | | | | | | | n-Propylbenzene
o-Chlorotoluene | Pace | 624.1 | | 2350 | 0.349 | ND** ND/ ND ⁵ | 110 | ND
ND | | ND | | | | | | | | | o-Cresol (2-Methylphenol) | Pace
Pace | 624.1
625.1 | 1920 | 2420
500 | 0.375 | ND/ND ⁶ | ND/ND ⁶ | ND ND | ND | ND. | ND ND | ND ND | $\frac{ND/ND^3}{ND/ND^5}$ | | ND | | ND | | | | | | | | | o-Dichlorobenzene [1,2-Dichlorobenzene] | Pace | 624.1 | 1320 | 77 | 0.349 | ND** ND/ ND ⁵ | 1.12 | ND | | ND | | | | | | | | | Oil & Grease | Pace | 1664 | 15000 | 10100 | 1290 | ND | ND | 2440 J | ND | ND | 1880 J | 4160 J | 3840 J/ 2220 J ⁵ | ND | ND | | ND | | | | | | | | | o-Xylene | Pace | 624.1 | | 2400 | 0.341 | .473 J | ND** | ND** | ND** | ND** | 0.426 J | ND** | ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | p-Chlorotoluene | Pace | 624.1 | | 2120 | 0.351 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | p-Cresol p-Dichlorobenzene [1,4-Dichlorobenzene] | Pace | 625.1 | 698 | 180 | 0.266 | ND** | ND** | ND** | ND
ND** | ND** | ND** | ND** | ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Parathion, ethyl ⁸ | Pace
Pace/Ana | 1657 | | na | 0.274 | ND | ND., | ND. T | ND ₈ | ND ₈ | ND ₈ | ND | ND/ ND ⁵ | NU | ND | | UND | | | | | | | | | Parathion, methyl ⁸ | Pace/Ana | 1657 | | na | 0.0506 | | | | ND ⁸ | ND ⁸ | ND ⁸ | | | | | | | | | | | | | | | Pentachlorobenzene | Pace | 625.1 | | 0.485 | 0.369 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Pentachlorophenol Pentachlorophenol | Pace | 625.1 | | 0.29 | 0.313 | ND ND/ ND ⁵ | N | ND | | ND | | | | | | | | | Perfluoro-n-octane Sulfonate | Pace | 537 | | Report | 0.000623 | see note ¹¹ | 2.1 D | .13 D | | | | 0.062 | - | | | | | | | | | | | | | Phenanthrene | Pace | 625.1 | 200 | 3.62 | 0.366 | ND ND/ ND ⁵ | | ND | | ND | | | | | | | | | Phenol Phosphate (as PO4) ⁷ | Pace
Pace | 625.1
SM4500 P E | 300
15000 | 15
15000 | 0.334 | 1.84 J
419 B J6 ⁷ | ND
406 J6 ⁷ | ND
504 B ⁷ | ND
1237 | ND ⁷ | ND
2917 | ND
696 | ND/2.24 J^5 280/ 218 ⁵ | 1120 0 | .97 J | | 1.65 B J | | | | | | | | | Phosphate (as PO4) p-Isopropyltoluene | Pace | 624.1 | 13000 | 3700 | 0.35 | ND** ND/ ND ⁵ | | ND | | ND | | | | | | | | | Polychlorinated Biphenyls [PCBs] | Eurofins ¹⁴ | 608 | | 0.000874 | 0.042 | ND ND/ ND ⁵ | 110 | ND | | ND | ND | ND | ND | ND | | | | | Pyrene | Pace | 625.1 | | 0.24 | 0.333 | ND ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Pyridine | Pace | 625.1 | 370 | 0.29 | 1.37 | ND ND/ ND ⁵ | 110 | ND | | ND | | | | | | | | | sec-Butylbenzene | Pace | 624.1 | | 1580 | 0.365 | ND** ND/ ND ⁵ | 1.15 | ND | | ND | | | | | | | | | Selenium, Total Silver, Total | Pace
Pace | 200.8 | | 2.18 | 0.32 | 1.01 J
ND | ND | ND
ND | ND | 0.444 J
ND | .795 J
ND | 0.572 J
ND | 0.485 J/ 0.363 J ⁵
ND/ ND ⁵ | 011111 | ND
ND | | 0.876 J
ND | | | | | | | | | Styrene | Pace | 624.1 | | 455 | 0.307 | ND** ND/ ND ⁵ | IND | ND | | ND | | | | | | | | | Sulfide (as S) | Pace | SM4500 | 400 | 200 | 6.5 | ND | ND | ND J6 | ND | ND | ND | ND | ND/ ND ⁵ | 111 | ND | | ND | | | | | | | | | tert-Butylbenzene | Pace | 624.1 | | 1400 | 0.399 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Tetrachloroethylene | Pace | 624.1 | | 0.29 | 0.372 | ND** ND/ ND ⁵ | 110 | ND | | ND | | | | | | | | | Thallium, Total | Pace | 200.8 | 225 | 0.314 | 0.28 | ND | ND | ND | ND | ND | ND | ND
0.515.B.L | ND/ ND ⁵ | IND | ND | | ND | | | | | | | | | Tin, Total Toluene | Pace
Pace | 200.8
624.1 | 335 | 150
26 | 0.24 | 2 28 | ND** | ND** | ND
ND** | 0.589 J | .258 J
3.72 | 0.515 B J
0.46 J | 0.480 B J/ 0.256 J ⁵
ND/ ND ⁵ | | 0.242 J
ND | | ND | | | | | | | | | Total BTEX (*2) | Pace | 624.1 | 460 | 140 | 0.412 | 11.05 | ND** | ND** | .82 J | 3.379 | 21.05 | 2.6 J | 1.27/ 1.33 ⁵ | 110 | 1.56 | | ND | | | | | | | | | Total Dissolved Solids | Pace | SM4500C | | Report | 7050 | 1460000 | 1500000 | 1550000 | 1870000 | 1990000 | 2040000 | 2200000 | 2210000/ 2200000 ⁵ | | 1990000 | | 2170000 | | | | | | | | | Total Organic Carbon | Pace | 5310B | | Report | 102 | 12500 | 8550 | 7350 | 5460 | 10700 | 12500 | 9480 | 15100/ 12400 ⁵ | 1400 B | 1620 B | | 3150 | | | | | | | | | Total Organic Nitrogen | Page | Calc based on ⁻ | TKN 13000 | GE 90 | 31 7 | 106 | 504 | 156 | 270 | 176 | 627 | 262 | 005 / 7575 | 227 | 42.2.1 | | 706 | | | | | | | | | Total Organic Nitrogen | Pace | and Ammonia | 13000 | 6580 | 31./ | 486 | 594 | 450 | 2/8 | 476 | 632 | 363 | 865/ 757 ⁵ | 227 | 42.3 J | | /90 | | | | | | | | | | | | | | based on | | | | | | | | _ | | | | | | | | | | | | | Total Purgeable Halocarbons ² | Pace | 624.1 | 200 | 100 | individual | 24.29 J | 20.653 J | 10.367 J | 7.028 J | 7.592 J | 8.364 J | 20.449 J | 23.06 J/24.0 ⁵ J | ND | ND | | ND | | | | | | | | | Total Suspended Solids | Pace | SM2540D | 74100 | 27300 | compounds ² | 3200 J | 1670 J | 1640 J | 3100 | 3700 | 6150 | 4530 | 3020/ 3200 ⁵ | ND | ND | | 600 J | | | | | | | | | Toxaphene | Eurofins ¹⁴ | 608 | , 1100 | 0.000179 | 0.168 | ND ND/ ND ^{5, 6} | | ND ⁶ | ND | ND | | ND | ND | ND | | | | | trans-1,2-Dichloroethene | Pace | 624.1 | | 6950 | 0.000396 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | trans-1,3-Dichloropropene | Pace | 624.1 | | 119 | 0.000419 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Tributyltin [TBT] | Eurofins | Organotins_G0 | CMS | 0.00663 | 0.0459 | ND ND/ND ⁵ | ND | ND ND | ND | | ND | | | | | | | | Trichloroethylene [Trichloroethene] | Pace | 624.1 | | 21 | 0.000398 | ND** ND/ ND ⁵ | ND | ND | | ND | | | | | | | | | Trichlorofluoromethane Vinyl Chloride | Pace
Pace | 624.1
624.1 | | 43300
16.5 | 0.0012 | ND**
ND** | ND** | ND**
ND** | ND**
ND** | ND**
ND** | ND**
ND** | ND**
ND** | $\frac{\text{ND/ ND}^5}{\text{ND/ ND}^5}$ | ND | ND
ND | | ND | | | | | | | | | Xylenes, Total | Pace | 624.1 | | 850 | 0.000259 | ND** | ND** | ND** | ND** | ND** | 1.23 J | ND** | ND/ ND ⁵ | | ND | | ND | | | | | | | | | Zinc, Total | Pace | 200.8 | 160 | 70 | 1.91 | 12.6 | 8.46 J | 16.6 | 13.1 | 20.5 | 10.2 | 7.87 B J | 14.0 B/ 11.4 B ⁵ | | 6.63 J | | 22.9 B J3 J5 | | | | | | | | | | | | | | | | 4 | and the second s | and the second s | | | | , ==: - | | . 1 | | | <u> </u> | | The second secon | | | | | Qualifiers J = Data has been estimated as the result is between the RL and MDL J3 - Associated batch QC was outside the QC critereria range for precision J4 - Associated batch QC was outside the QC critereria range for accuracy J5 - Sample matrix interferred with the ability to make any accurate determination; spike value high. J6 - Sample matrix interferred with the ability to make any accurate determination; spike value Iow. B - Compound was found in the associate method blank D - Dilution Q - Sample was prepared and/or analyzed past holding time as defined in the method; concentrations should be considered minimum values. P1 - RPD value not applicable for sample concentration less than 5 times the reporting limit *Units converted to ug/L unless noted ** individual grabs collected per 24 hr sampling period for lab compositing; Lab did not composite, but rather ran a single grab days 1-7. Additional analysis of all grabs requested, to be entered on "VOCs Grabs by Day" tab for Days 1-7. ***TPDES Permit limits reported as Daily Maximum unless it is "N/A", in which case Single Grab is then listed (units converted to ug/L) **** Lab extraction error - no result reported ***** Lab received improperly preserved bottleware for this day; no result available. 1 Lab does not report as totals, rather individual compounds 2-methylphenol and 3 & 4-methylphenol ² Lab reports as individual compounds; Total purgeable halocarbons are summed ³ Same sample was re-analyzed within hold time had a non-detect result ⁴ Result sample is 'grab' Additional data value is from a duplicate sample collected for this day Compound was reported by both Pace and Eurofins for this day. ⁷ The lab ran a Total Phosphorous method EPA 365.4; this has been discussed with them and will be corrected going forward ⁸ Compounds Parathion, ethyl and Parathion, methyl were inadvertantly reported by the lab on days 4,5 and 6. This has been corrected for future dates. ⁹ OP Pest compounds were reported by method 8141 until Day 4; reported by Method 1657 Day 4 ¹⁰ Mercury was run by the lab by method 245.1 Days 1-7 and 245.7 Day 8 on. ¹¹ Lab erroneously utilized our PFOS bottle for a different parameter, and shipped our TSS sample bottle to Pace MN for PFOS analysis; bottle had teflon liner and therefore was unusable for this analysis. ¹² Both a grab and composite sample were analyzed on Days 13 and 19 for CBOD, both results are provided and are ND. ¹³ CBOD sample for Day 16 was inadvertantly not collected and sent for analysis; no result ¹⁴Lab changed from Pace to Eurofins to acheive better detection limits on Day 15 for PCBs and Day 16 for OC Pesticides Method 608. ¹⁵ Hexavalent Chromium, Enterococci, and CBOD were run by a&b on Day 23 to meet short holds on these tests during the Holiday weekend. ¹⁶ Pace ran Hg per 245.1 despite subcontracting to ANA labs for 245.7 analysis, so both results | | | | | | | | WW-2019 | 00424-002-DAY 1- (A, I | 3,C, D) | | WW-201900425-00 | | , D) | ww | -201900427-002
DAY | -DAY 3- (A, B,C, D) | | WW-20190 | 502-002-DAY 4- (A, | B,C, D) | v | VW-20190503-002-DAY 5-
DAY 5 | (A, B,C, D) | | | 02-DAY 6- (A, B,C, D)
DAY 6 | , | NW-20190505-002-DA
DAY 7 | Y 7-(A,B,C) | |---|-----------
-----------------|-------------|---------------|--------------------------------|--------------|-----------------|------------------------------------|-----------------|-------------------------------|---------------------|---------------------|---------------|-----------------|-----------------------|---------------------|--------------------|------------------|---------------------|-------------------|---------------|---------------------------------|-----------------------------|--------------------------------|---------------------|--------------------------------|------------------|--|-------------| | Effluent Compounds | Laborato | Analyt
Metho | Daily Maxim | | Originally Laboratory Limits (| (1)9/11 | Day1E
(ug/L) | B ¹ Day 1C ¹ | | Day2A ³
(ug/L)* | Day 2B ³ | Day 2C ³ | | | Day 3B ³ | | | | Day 4C ¹ | | | | Day 5D ¹ (ug/L)* | Day 6A ¹
(ug/L)* | Day 6B ¹ | Day 6C ¹ Da | | 77A ¹ Day 7B ¹
/L)* (ug/L)* | | | 1,1,1,2-Tetrachloroethane | Pace | 624.1 | (48/11) | (ug/L) | Reported 0.385 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | | ND | | 1,1,1-Trichloroethane | Pace | 624.1 | | 7100 | mg/L 0.319 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,1,2,2-Tetrachloroethane | Pace | 624.1 | | 26.35 | mg/L 0.13 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,1,2-Trichlor-1,2,2-trifluoroethane (1,1,2-Trichlorotrifluoroethane) | Pace | 624.1 | | 6040000 | mg/L 0.303 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,1,2-Trichloroethane | Pace | 624.1 | | 21 | mg/L 0.383 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,1-Dichloroethane 1,1-Dichloroethene (1,1-Dichloroethylene) | Pace | 624.1
624.1 | | 16 | mg/L 0.259
mg/L 0.398 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NL | D ND | ND | ND | | 1,1-Dichloropropene | Pace Pace | 624.1 | | 62200 | mg/L 0.352 | ND na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | 1,2,3-Trichlorobenzene | Pace | 624.1 | | 171 | mg/L 0.23 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,2,3-Trichloropropane | Pace | 624.1 | | 165 | mg/L 0.807 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,2,4-Trichlorobenzene | Pace | 624.1 | | 0.076 | mg/L 0.355 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,2,4-Trimethylbenzene | Pace | 624.1 | | 217 | mg/L 0.373 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,2-Dibromo-3-chloropropane | Pace | 504.1 | | 11300 | mg/L 0.00043 | ND N | ND | ND ND |) ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Ethylene Dibromide (1,2-Dibromoethane) | Pace | 504.1 | | 4.24 | mg/L 0.00024 | ND N | ND ND | ND ND |) ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,2-Dichlorobenzene (o-Dichlorobenzene) 1,2-Dichloroethane | Pace | 624.1 | | //
C9 | mg/L 0.349
mg/L 0.361 | .731 J | .658 L | ND
FOO I | ND | ND | ND | ND | na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND
1.15 | ND
0.04 I | 1.25 | ND NL | D ND | .744 J | ND 721 I | | 1,2-Dichloropropane | Pace Pace | 624.1
624.1 | | 153 | mg/L 0.361
mg/L 0.306 | ./31 J | ND | .509 J | ND | ND | ND | ND | na | ND N | ND ND | VD na | ND | ND | ND | ND | ND | 1.09 1.46 | 1.15 | 0.94 J | 1.25
ND | ND NI | D ND | .744 J | ./31 J | | 1,3,5-Trimethylbenzene | Pace | 624.1 | | 3050 | mg/L 0.387 | ND na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | 1,3-Dichlorobenzene (m-Dichlorobenzene) | Pace | 624.1 | | 31 | mg/L 0.22 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,3-Dichloropropene [1,3-Dichloropropylene] | Pace | 624.1 | | 29 | mg/L 0.5 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 1,4-Dichlorobenzene (p-Dichlorobenzene) | Pace | 624.1 | | 15 | mg/L 0.274 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 2,2-Dichloropropane | Pace | 624.1 | | 163 | mg/L 0.321 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | 2-Butanone (MEK) | Pace | 624.1 | 4810 | 1650 | mg/L 3.93 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | 146 | ND | | 2-Chlorotoluene | Pace | 624.1 | | 22.52 | mg/L 0.375 | ND | ND
 | ND | ND | ND | ND | ND | na | ND N | ND I | ND na | ND | ND | ND | ND | ND | ND ND | ND
 | ND | ND | ND NE | D ND | ND | ND | | 2-Hexanone | Pace | 624.1 | | 33400 | mg/L 3.82 | ND na | ND N | ND ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | ND ND | ND | ND | | 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) | Pace | 624.1 | | 61500 | mg/L 0.351 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | Acetone | Pace Pace | 624.1
624.1 | 30200 | 61500
7110 | mg/L 2.14
mg/L 10 | ND
ND | ND | ND | 10.9 J | ND | ND | ND | na | ND N | אט | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | | ND | ND | | Acrylonitrile | Pace | 624.1 | 30200 | 96 | mg/L 1.87 | ND | ND | ND | ND | ND | 3.87 | ND | na | ND N | ND . | 4.81 I na | 16 | ND | ND | ND | ND | 19.4 ND | ND | ND | 4.65 | ND NI | D ND | ND | ND | | Benzene | Pace | 624.1 | | 37 | mg/L 0.331 | 8.77 | 0.105 | 4.61 | 1.13 | ND | 8.18 | 1.5 | na | ND N | ND | 841 J na | .82 J | 3.23 | 2.13 | 2.8 | 2.79 | 3.92 15.3 | 11.5 | 16.1 | 8.38 | 2.65 10 | 0.4 2.14 | 3.13 | 6.81 | | bromobenzene | Pace | 624.1 | | | mg/L 0.35 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Bromochloromethane | Pace | 624.1 | | 26800 | mg/L 0.52 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Bromodichloromethane [Dichlorobromomethane] | Pace | 624.1 | | 275 | mg/L 0.38 | .559 J | .524 J | .536 J | .838 J | .403 J | .438 J | ND | na | ND N | ND | ND na | .818 J | .431 J | ND | ND | ND | 0.712 J ND | ND | .694 J | 0.823 J | 0.62 J NE | D 0.5 | 79 J 0.602 J | 0.468 J | | Bromoform [Tribromomethane] | Pace | 624.1 | | 1060 | mg/L 0.469 | 18.9 | 9.4 | 23.3 | 10.9 | 17 | 26.6 | 2.68 | na | 9.62 | 9.61 | 29.2 na | ND | 7.69 | 3.1 | 7.21 | 7.02 | 5.71 5.6 | 13 | 6.73 | 10.4 | 19.3 10 | 0.5 18.4 | 4.06 | 6.65 | | bromomethane (Methyl bromide) | Pace | 624.1 | | 600 | mg/L 0.866 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Carbon disulfide | Pace | 624.1 | | 34300 | mg/L 0.275 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | Carbon Tetrachloride | Pace | 624.1 | | 18 | mg/L 0.379 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Chlorobenzene Chlorodibromomethane [Dibromochloromethane] | Pace | 624.1 | | 15 | mg/L 0.348 | ND | ND
4.31 | ND
4.39 | ND | ND
2.25 | ND
4.1.4 | 7 20 L | na | ND N | ND | ND na | ND
6 31 | ND 773 I | ND
422 L | ND | ND
0.573.1 | ND ND 0.845 J 0.938 J | 1.00 | 1 20 | ND | ND NL | ND ND 1 4 | 1.15 | ND | | Chloroethane | Pace Pace | 624.1
624.1 | | 104 | mg/L 0.327
mg/L 0.453 | 4.1
ND | 4.31
ND | 4.38
ND | 3.9 | 3.25
ND | 4.14
ND | 7.29 J | na | .747 J . | /41 J | VD na | 0.21 | .773 J | .422 J | 1 CO.1 | 0.572 J | 0.845 J 0.938 J | 1.99 | 1.29
ND | 2.24
ND | 1.08 1.6 | 81 1.4
D ND | 1.12 | 1.94
ND | | Chloroform [Trichloromethane] | Pace | 624.1 | | 21 | mg/L 0.324 | ND na | ND N | ND | VD na | ND
ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | Chloromethane | Pace | 624.1 | | 13500 | mg/L 0.276 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | cis-1,2-Dichloroethene (cis and trans) | Pace | 624.1 | | 1120 | mg/L 0.26 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | cis-1,3-Dichloropropene | Pace | 624.1 | | 40 | mg/L 0.418 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Cyclohexane | Pace | 624.1 | | 295000 | mg/L 0.39 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Dibromomethane | Pace | 624.1 | | | mg/L 0.35 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Dichlorodifluoromethane | Pace | 624.1 | | 37600 | mg/L 0.551 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Dichloromethane [Methylene Chloride] | Pace | 624.1 | | 40 | mg/L 1 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Ethylbenzene | Pace | 624.1 | | 32 | mg/L 0.384 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NL | D ND | ND | ND | | Isopropylbenzene m.p. Vylono | Pace | 624.1 | | 8440
2400 | mg/L 0.326
mg/L 0.719 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND ND | ND na | .821 J | ND | ND | ND | ND | ND ND | ND | 0.799 J | ND | ND NE | D ND | ND | ND | | m,p-Xylene Methyl acetate | Pace Pace | 624.1
624.1 | | 822000 | mg/L 0.719
mg/L 4.3 | ND na | ND N |
ND | VD na | ND
.821 J | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | ם אוט | ND | ND | | Methyl Chloride | Pace | 624.1 | | 86 | mg/L 4.3 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | Methyl cyclohexane | Pace | 624.1 | | 157000 | mg/L 3.5 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Methyl ethyl ketone (2-Butanone) | Pace | 624.1 | 4810 | 992000 | mg/L 3.93 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Methyl tert-butyl ether [MTBE] | Pace | 624.1 | | 15 | mg/L 0.367 | ND | ND | .521 J | ND | ND | 1.89 | ND | na | ND N | ND | 561 J na | ND | ND | .69 J | ND | ND | ND 0.649 J | 0.385 J | ND | ND | ND NE | D ND | 0.784 J | ND | | Methylene bromide (bromomethane) | Pace | 624.1 | | 4300 | mg/L 0.346 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Naphthalene | Pace | 624.1 | | 22 | mg/L 0.372 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | n-Butylbenzene | Pace | 624.1 | | 1200 | mg/L 0.361 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | n-Propylbenzene o Chlorotoluene (2 chlorotoluene) | Pace | 624.1 | | 2350 | mg/L 0.349 | ND
ND | ND | ND | ND | ND | .59/ J | ND | na | אט א | אט | ער na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | ND ND | ND | ND
ND | | o-Chlorotoluene (2-chlorotoluene) o-Xylene | Pace Pace | 624.1
624.1 | | 2420
2400 | mg/L 0.375
mg/L 0.341 | ND
.473 J | ND | ND | ND | ND | ND | ND | na | ND V | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | 0.426 J | ND | ND NI | D VID | 110 | ND | | p-Chlorotoluene (4-chlorotoluene) | Pace | 624.1 | | 2120 | mg/L 0.341
mg/L 0.351 | .473 J
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | ם אום | ND | ND | | p-Isopropyltoluene | Pace | 624.1 | | 3700 | mg/L 0.35 | ND na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D ND | ND | ND | | sec-Butylbenzene | Pace | 624.1 | | 1580 | mg/L 0.365 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Styrene | Pace | 624.1 | | 455 | mg/L 0.307 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | tert-Butylbenzene | Pace | 624.1 | | 1400 | mg/L 0.399 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | ND | ND | | Tetrachloroethene (Tetrachloroethylene) | Pace | 624.1 | | 0.29 | mg/L 0.372 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | 110 | ND | | Toluene | Pace | 624.1 | | 26 | mg/L 0.412 | 2.28 | ND | 1.22 | .952 J | ND | 1.83 | ND | na | ND N | ND | ND na | ND | .483 J | ND | .597 J | 0.589 J | 0.523 J 3.29 | 3.1 | 3.72 | 1.55 | 0.479 J 2.5 | 55 0.40 | | | | trans-1,2-Dichloroethene (1,2-trans -Dichloroethylene) | Pace | 624.1 | | 1120 | mg/L 0.26 | ND | ND
 | ND | ND | ND | ND | ND | na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D ND | | ND | | trans-1,3-Dichloropropene | Pace | 624.1 | | 119 | mg/L 0.419 | ND na | ND N | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | ND ND | | ND | | Trichloroethene (Trichloroethylene) Trichlorofluoromethane | Pace Pace | 624.1
624.1 | | 43300 | mg/L 0.398
mg/L 1.2 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND V | ND | ND na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NE | D NID | ND | ND
ND | | Vinyl Chloride | Pace | 624.1 | | 16.5 | mg/L 1.2
mg/L 0.259 | ND
ND | ND | ND | ND | ND | ND | ND | na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | ND | ND | ND NI | D אוט | ND | ND | | Xylenes, Total | Pace | 624.1 | | 850 | mg/L 0.259 | ND na | ND N | ND | VD na | ND | ND | ND | ND | ND | ND ND | ND | 1.23 J | ND | ND NI | D ND | | ND | | Total BTEX (*2) | Pace | 624.1 | 460 | 140 | mg/L 0.331 | 11.05 | 0.105 | 5.83 | 2.082 | ND | 10.01 | 1.5 | na | ND N | ND | 841 J na | .82 J | 3.713 J | 2.13 | 3.397 J | 3.379 | 4.443 18.59 | 14.6 | 21.05 | 9.93 | 3.129 12 | 2.95 2.6 | 146 | 7.91 | | Total Purgeable Halocarbons | Pace | 624.1 | 200 | 100 | mg/L based on individual | | 14.234 | 4 28.725 | 15.638 | 20.653 | 31.178 | 9.97 | na | 10.367 J 1 | 10.351 | 31.82 na | 7.028 | | 3.522 J | 7.86 J | 7.592 | 7.267 7.998 | 16.14 | 8.364 | 14.713 | 19.92 13 | 3.27 20.4 | 149 J 6.526 J | | | Epichlorohydrin*** | SGS | 8260 | | 2751 | ug/L 2.2 | see othe | er tab see ot | her tab see other ta | b see other tab | b see other t | tab see other tab | see other tab | see other tab | see other tab s | see other tab | see other tab see | e other tab see ot | her tab see othe | er tab see other | tab see other tab | see other tab | see other tab see oth | ner tab see other tab | see other ta | b see other tab | see other tab se | e other tab ND | ND | ND | | Ethylene Glycol**** | Pace | 8015 | | 22967280 | mg/L 0.492 | see othe | er tab see ot | her tab see other ta | b see other tab | b see other t | tab see other tab | see other tab | see other tab | see other tab s | see other tab | see other tab see | e other tab see ot | her tab see othe | er tab see other | tab see other tab | see other tab | see other tab see oth | ner tab see other tab | see other ta | b see other tab | see other tab se | ee other tab 954 | 0 ND | ND | | Lab reported units converted to ug/L as applicable | *Lab reported units converted to ug/L as applicable ** TPDES Permit limits reported as Daily Maximum or Single Grab as applicable, units converted to ug/L ***Day 7 was not composited at lab, rather run as individual grabs. All other days were (and will be) run after lab compositing. be) run after lab compositing. ****Pace ran individual grabs for Ethylene Glycol on Day 7 only. ¹Four (4) vials were submitted to the lab for compositing, the lab did not composite but instead analyzed one of the 4 vials provided. The original analysis is found on tab 'Lab Data by Day'. The remaining 3 aliquots were run individually and that data is represented as B, C, D for Days 1, 4, 5, 6 & 7. ²Lab data not available for this aliquot ³Three (3) vials were received for Method 624.1 and Method 504.1 for compositing, the lab did not composite but instead analyzed one of the vials provided. The original analysis is found on tab 'Lab Data by Day'. The remaining aliquots were run individually and that data is represented as B and C for Method 624.1. The lab was able to use additional 40 ml vial, no headspace volume received for Ethylene Glycol to perform the 504.1 analysis for aliquot D on Days 2 and 3. | | Sample | | | | TRC | Instantaneous | Start | | |------------|---------|-----------|-------|------|------|---------------|---------|------------| | | Aliquot | Date | Time | рН | mg/L | Flow Rate | GPD | Finish GPD | | | A | 4/24/2019 | 12:28 | 7.25 | 0 | 177.9 | 2474854 | 2475043 | | 7 | В | 4/24/2019 | 19:28 | 7.82 | 0 | 128.7 | 2475043 | 2475348 | | DAY | С | 4/25/2019 | 6:31 | 7.51 | 0.04 | 92.29 | 2475348 | 2475485 | | | D | 4/25/2019 | 12:02 | 7.36 | 0.06 | 58.76 | 2475485 | END DAY 1 | | | Α | 4/25/2019 | 13:25 | 7.41 | 0.04 | 0.493 | 2475511 | 2475805 | | 7 2 | В | 4/25/2019 | 19:25 | 9.1 | 0 | 3.681 | 2475805 | 2475836 | | DAY | С | 4/26/2019 | 6:36 | 8.12 | 0.02 | 3.516 | 2475836 | END DAY 2 | | | D | | | | | | | | | | Α | 4/26/2019 | 12:00 | 8.23 | 0.04 | 81.02 | 2475992 | 2476100 | | × 3 | В | 4/26/2019 | 19:30 | 8.87 | 0 | 82 | 2476100 | 2476378 | | DAY | С | 4/27/2019 | 6:50 | 7.3 | 0.08 | | 2476378 | 2476447 | | | D | 4/27/2019 | 12:00 | 8.72 | 0.07 | 37 | 2476447 | END DAY 3 | | | Α | 5/2/2019 | 14:10 | 6.63 | 0.08 | 8.354 | 2476451 | 2476678 | | 4 4 | В | 5/2/2019 | 22:10 | 7.04 | 0.03 | 83.88 | 2476678 | 2476899 | | DAY | С | 5/3/2019 | 5:57 | 7.23 | 0.05 | 146.6 | 2476899 | 2477137 | | | D | 5/3/2019 | 14:00 | 7.36 | 0.04 | 87.98 | 2477137 | END DAY 4 | | | Α | 5/3/2019 | 14:00 | 7.36 | 0.04 | 87.98 | 2477137 | 2477373 | | Υ 5 | В | 5/3/2019 | 22:00 | 7.1 | 0.05 | 25.65 | 2477373 | 2477658 | | DAY | С | 5/4/2019 | 6:00 | 8.14 | 0.02 | 142.3 | 2477658 | 2477906 | | | D | 5/4/2019 | 14:00 | 7.3 | 0 | 94.7 | 2477906 | END DAY 5 | | | Α | 5/4/2019 | 14:00 | 7.3 | 0 | 94.7 | 2477906 | 2478132 | | λ 6 | В | 5/4/2019 | 22:00 | 8.39 | 0.04 | 133.5 | 2478132 | 2478338 | | DAY | С | 5/5/2019 | 6:00 | 7.77 | 0.01 | 122 | 2478338 | 2478617 | | | D | 5/5/2019 | 14:00 | 7.71 | 0 | 16.59 | 2478617 | END DAY 6 | | | Α | 5/5/2019 | 14:00 | 7.71 | 0 | 16.59 | 2478617 | 2478852 | | ٧ 7 | В | 5/5/2019 | 22:00 | 6.67 | 0.05 | 13.54 | 2478852 | 2479097 | | DAY | С | 5/6/2019 | 6:00 | 6.94 | 0.07 | 20.35 | 2479097 | 2479149 | | | D | 5/6/2019 | 14:00 | - | - | 0 | 2479149 | END DAY 7 | | | Α | 5/10/2019 | 11:30 | 7.93 | 0.05 | 174.4 | 2479542 | 2479892 | | 8 ≻ | В | 5/10/2019 | 19:30 | 8.3 | 0.02 | 23.05 | 2479892 | 2480107 | | DAY | С | 5/11/2019 | 3:30 | 7.8 | 0.01 | 58.96 | 2480107 | 2480303 | | | D | 5/11/2019 | 11:30 | 7.73 | 0.03 | 57.33 | 2480303 | END DAY 8 | | | Α | 5/11/2019 | 11.30 | 7 73 | 0.03 | 57.33 | 2480303 | 2480532 | |-----|---|-------------|-------|------|------|-------|---------|------------| | 6 | В | 5/11/2019 | 19:30 | 7.58 | 0.02 | 15.49 | 2480532 | 2480733 | | DAY | C | 5/12/2019 | 3:30 | 8.15 | 0.03 | 59.72 | 2480733 | 2481045 | | | D | 5/12/2019 | | 7.86 | 0.03 | 67.09 | 2481045 | END DAY 9 | | | A | 5/12/2019 | | 7.86 | 0.03 | 67.09 | 2481045 | 2481338 | | 10 | В | 5/12/2019 | 19:30 | 7.91 | 0.02 | 67.09 | 2481338 | 2481643 | | DAY | C | 5/13/2019 | 3:30 | 7.78 | 0.02 | 74.11 | 2481643 | 2481905 | | ۵ | D | 5/13/2019 | 9:15 | 8.53 | 0.06 | 68.73 | 2481905 | END DAY 10 | | | A | 5/13/2019
 11:30 | 8.38 | 0.01 | 29.97 | 2481939 | 2482240 | | 11 | В | 5/13/2019 | | 8.1 | 0.01 | 72.24 | 2482240 | 2482545 | | DAY | С | 5/14/2019 | 3:30 | 8.06 | 0 | 62.29 | 2482545 | 2482768 | | D' | D | 5/14/2019 | | 8.23 | 0.01 | 72.24 | 2482768 | END DAY 11 | | | A | 5/14/2019 | 11:30 | 8.23 | 0.01 | 72.24 | 2482768 | 2483070 | | 12 | B | 5/14/2019 | 19:30 | 7.97 | 0.01 | 68.32 | 2482708 | 2483378 | | DAY | С | 5/15/2019 | 3:30 | 8.19 | 0.03 | 60.35 | 2483378 | 2483591 | | ď | D | 5/15/2019 | 11:30 | 7.83 | 0.02 | 76.01 | 2483591 | END DAY 12 | | | A | 5/15/2019 | 11:30 | 7.83 | 0.02 | 76.01 | 2483591 | 2483878 | | 13 | A | 5/15/2019 | 19:30 | 7.99 | 0.02 | 64.42 | 2483878 | 2483878 | | DAY | C | 5/16/2019 | 3:30 | 8.04 | 0.03 | 77.04 | 2484174 | 2484394 | | Ď | D | 5/16/2019 | 11:30 | 8.28 | 0.04 | 4.068 | 2484394 | END DAY 13 | | | A | 5/16/2019 | | 8.28 | 0.04 | 4.068 | 2484394 | 2484637 | | 14 | В | 5/16/2019 | | 8.32 | 0.04 | 0.004 | 2484637 | 2484881 | | DAY | С | 5/17/2019 | 3:30 | 7.88 | 0 | 76.74 | 2484881 | 2485128 | | D, | D | 5/17/2019 | 11:30 | 7.8 | 0 | 0.579 | 2485128 | END DAY 14 | | | A | 5/17/2019 | | 7.8 | 0 | 0.579 | 2485128 | 2485328 | | 15 | В | 5/17/2019 | 19:30 | 7.77 | 0.06 | 55.08 | 2485328 | 2485645 | | DAY | С | 5/18/2019 | 3:30 | 7.8 | 0.06 | 22.48 | 2485645 | 2485999 | | ۵ | D | 5/18/2019 | 11:30 | 7.93 | 0.00 | 95.55 | 2485999 | END DAY 15 | | | A | 5/18/2019 | 11:30 | 7.93 | 0.00 | 95.55 | 2485999 | 2486352 | | 16 | В | 5/18/2019 | 19:30 | 7.94 | 0.00 | 92.05 | 2486352 | 2486682 | | DAY | С | 5/19/2019 | 3:30 | 8.01 | 0.01 | 92.04 | 2486682 | 2487043 | | ۵ | D | 5/19/2019 | 11:30 | 8.15 | 0.02 | 81.71 | 2487043 | END DAY 16 | | | A | 5/19/2019 | 11:30 | 8.15 | 0.01 | 81.71 | 2487043 | 2487365 | | 17 | В | 5/19/2019 | 19:30 | 8.02 | 0.00 | 47.81 | 2487365 | 2487680 | | _ | U | 3, 13, 2013 | 15.50 | 0.02 | 0.00 | 77.01 | 2407303 | 2707000 | | 1 | | | | | | | | | |------|---|-----------|-------|------|------|--------|---------|------------| | DA | С | 5/20/2019 | 3:30 | 7.91 | 0.01 | 81.86 | 2487680 | 2488070 | | | D | 5/20/2019 | 11:30 | 7.97 | 0.01 | 74.55 | 2488070 | END DAY 17 | | | Α | 5/20/2019 | 11:30 | 7.97 | 0.01 | 74.55 | 2488070 | 2488473 | | / 18 | В | 5/20/2019 | 19:30 | 8.10 | 0.04 | 98.09 | 2488473 | 2488866 | | DAY | С | 5/20/2019 | 3:30 | 8.23 | 0.00 | 93.87 | 2488866 | 2489301 | | | D | 5/21/2019 | 11:30 | 8.46 | 0.00 | 82.79 | 2489301 | END DAY 18 | | | Α | 5/21/2019 | 11:30 | 8.46 | 0.00 | 82.79 | 2489301 | 2489614 | | (19 | В | 5/21/2019 | 19:30 | 8.10 | 0.00 | 88.30 | 2489614 | 2490051 | | DAY | С | 5/22/2019 | 3:30 | 7.92 | 0.00 | 86.23 | 2490051 | 2490470 | | | D | 5/22/2019 | 11:30 | 7.68 | 0.00 | 84.34 | 2490470 | END DAY 19 | | | Α | 5/22/2019 | 11:30 | 7.68 | 0.00 | 84.34 | 2490470 | 2490854 | | / 20 | В | 5/22/2019 | 19:30 | 8.05 | 0.00 | 98.43 | 2490854 | 2491304 | | DAY | С | 5/23/2019 | 3:30 | 7.95 | 0.00 | 98.95 | 2491304 | 2491633 | | | D | 5/23/2019 | 11:25 | | | 0.00 | 2491633 | END DAY 20 | | | Α | 5/23/2019 | 15:00 | 8.08 | 0.01 | 104 | 2491655 | 2492002 | | / 21 | В | 5/23/2019 | 23:00 | 8.08 | 0.01 | 94.54 | 2492002 | 2492342 | | DAY | С | 5/24/2019 | 7:00 | 7.60 | 0.00 | 83.72 | 2492342 | 2492704 | | | D | 5/24/2019 | 13:55 | 7.97 | 0.02 | 92.54 | 2492704 | END DAY 21 | | | Α | 5/24/2019 | 14:00 | 7.97 | 0.02 | 92.54 | 2492704 | 2493161 | | 7 22 | В | 5/24/2019 | 22:00 | 8.45 | 0.01 | 93.67 | 2493161 | 2493581 | | DAY | С | 5/25/2019 | 6:00 | 8.31 | 0.01 | 81.56 | 2493581 | 2493854 | | | D | 5/25/2019 | 13:55 | 8.29 | 0.00 | 89.76 | 2493854 | END DAY 22 | | | Α | 5/25/2019 | 14:00 | 8.29 | 0.00 | 89.76 | 2493854 | 2494251 | | 7 23 | В | 5/25/2019 | 22:00 | 8.24 | 0.00 | 84.81 | 2494251 | 2494653 | | DAY | С | 5/26/2019 | 6:00 | 8.10 | 0.00 | 73.91 | 2494653 | 2494898 | | | D | 5/26/2019 | 13:55 | 8.44 | 0.07 | 95.71 | 2494898 | END DAY 23 | | | Α | 5/30/2019 | 8:00 | 8.41 | 0.04 | 92.27 | 2495788 | 2496166 | | / 24 | В | 5/30/2019 | 16:00 | 9.71 | 0.00 | 105.23 | 2496166 | 2496512 | | DAY | С | 5/31/2019 | 0:00 | 8.31 | 0.09 | 2.26 | 2496512 | 2496816 | | | D | 5/31/2019 | 13:12 | NS | NS | NS | 2496816 | END DAY 24 |